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The problem is solved using the method of integral transforms. We omit the interm- 
ediate calculations and quote the final result 
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here z = YC a (t)/c and A (z) = u (t (z)). 
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The rate of convergence of the method of finite elements in the analysis of na- 
tural membrane vibrations is investigated. The analysis is carried out on the 
basis of elements of two kinds constructed herein, 

The convergence criteria of the method of finite elements are formulated in 
[l, 23. Their theoretical foundation is given in [3], where it is shown that they 
are a sufficient condition assuring convergence in energy as the number of ele- 
ments increases. An analogous proof is presented in [4] for a specific thin plate 
element. 

The rate of convergence of the method is analyzed in [S. 61 in an example 
of one-dimensional systems. This question is investigated in [7] for a rectangu- 
lar plate whose two opposite sides are simply supported. 

1. To obtain the finite membrane element, let us use the general scheme of the 
method expounded in p]. Let the membrane be divided into elements in the shape of 
parallelograms by line segments (Fig. 1). The points of intersection of the segments 
are called nodes. Let us examine an individual element with the sides a. b. Let 5 0 tl 
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denote the oblique coordinate system connected with the element. Let us represent the 

bending mode of the element as 

w (49 97 t) = ‘p (41 rl)’ Cq (i) (1.1) 

where q (t) is a column vector of the gen- 

eralized coordinates of the element, II, 

(E, 11)’ is a line of basis functions, C is 
a transformation matrix determined from 

the condition of compatibility of the ben- 
ding mode and the generalized coordin- 
ates. 

Fig. 1. The vector Q (t) of the generalized for- 
ces corresponding to the coordinates q (t) 

is found from the principle of virtual displacements, which is written in the case of free 

motion as - 6U (t) + 6A (t) + 6q (t)’ Q (t) = 0 (1.2) 

where U (t) is the potential elastic strain energy, and &4 (1) is the work of the inertial 
forces on the virtual displacement. Taking account of (1. l), the potential energy of 

an element is expressed as follows: 
2U (t) = q (t)’ Kq (t) 

Here K is the stiffness matrix of a finite element, and T is the tension. The virtual 
work of the inertial forces, taking (1.1) into account, is 

nh 

djq (t) 
6:l = - lsq (‘1’ IPL I, c/t- 

m = sin TC’ l p (ET 11) II: (4, 71) $ (4, 11)’ ((5 dll C (1.4) 

where m is the inertial matrix of the element, and p (j, q) is the surface density. 
From (1.2) - (1.4) there follows the equation of motion of an individual element sub- 

jected to the forces Q (t) with which the elements interact 

Kg (t) + In .$ = (1 (t) (1.5) 

Let us take the displacements in the nodes as the generalized coordinates of the element 
1. e., we set 

q (t)’ = {Ii.“’ (t)) (i= 1, 2, 3,4). 

In this case the components of the vector (( (t) are the concentrated forces acting in 
the nodes. 

We take the system of basis functions in the form 

(1.6) 

Then 

(1.i) 
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Substituting (1.6). (1. ‘7) into (1.3) we find 

h’ = &- II k,j II (4 i = 1, L3, 4) 

k,,=ii,,=2($+~)--3cose, kri=k33=2(+++) f3coscp (1.8) 

a b a b 
k12 = kfl = kS4 = k,3 = b - 2 a, k13 = k31 = kz4 = ka2 = - 2 b + a 

h=h=- ($++)+3cosg, kna = ks2 = - (+++) -3coscp 

Analogously, for P = const , from (1.6), (1.7), (1.4) we find 

4 2 2 1 

2 4 1 2 
m_ - pabsincp 

36 2 1 4 2 

1 2 2 4 

(1.9) 

The inertia matrix can be constructed also from the assumption that the mass of the 
element is concentrated at its nodes. In this case the matrix m is a diagonal matrix. 

Using (1.3), (1.4), the stiffness and inertia matrices of finite elements of another 
shape can be obtained. In particular, elements corresponding to the customary finite-- 

difference partition mesh can be constructed. 

2, The following junction conditions hold at the common nodes for adjacent elem- 
ems (Fig; 1): 

ups(t) = W~'s+, (t) = u$, s (t) = u$yI,s+l (t) = ZJr, S) (t) 

QF", (t) + Qg',,, (t) + Q$.$ s (4 + Q$, s+l (1) = 0 (2.1) 

(r = 1, 2, . . . R; s= 1, 2, . . . S) 

where r, s are the number of elements and nodes of the model. Appropriate boundary 
conditions are formulated at the nodes lying on the contour bounding the membrane. 

The set of Eqs. (1.5) written for each element, the junction conditions, and the con- 

ditions on the boundary form a system describing the free motion of a model of finite 

elements. The vector of the generalized coordinates of the whole model qz (t), whose 
components are the displacements of its nodes, can be introduced. Then, on the basis 

of conditions (2. l), the stiffness K, and inertia mz matrices for the whole model can 

easily be constructed from the matrices K and m for an individual element. These ma- 
trices are square matrices. Their order agrees with the number of free nodes, and there- 
fore with the number of degrees of freedom of the model. If elements with masses con- 
centrated at the nodes are used, then the inertia matrix of the model m, is a diagonal 
matrix, as for an individual element. We call such a system of elements a model with 
point masses as contrasted to a model with distributed mass for which the inertia matrix 

of an element is expressed by (1.9). 
The equation of free vibrations of a model of finite elements is 

cm, (t) 
h_,q, (i) + rrlz - = (’ tit’ 

(2.2) 

3. In some cases, (2.2) is successfully transformed to a convenient form for analyt- 
ical investigation. Thus, for a model of identical elements with v =n/2, for which K 

and m are expressed by (1.8), (1.9), we can write 
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(3.1) 

= T (& s+%l + 4&% + /& %D) + + (&? % + 4/g %I + ng-1* %) 1 p& s)/# = ,w, s) + .&#,a + Jr-1,s) 

[r(r,S)w = W(ttl.s+l) + ,(r+l,s-1) + ,+1, s+1) + ,(+I, S-1) 
XY 

nc7i Gw = &, s+l) _ 2Jr. 8) + W(f, s-1) 

In the case of a rectangular membrane r = 1, 2... R - 1, s = 1, 2. . . . . S - 1. The 
solution of the system (3.1) is 

w@,*) (t) = Dexp [iot - i2ar - i2@] (3.2) 

For a rectangular membrane clamped along the contour, it follows from the boundary 
conditions that 

fiP nn 
a=m, P=,, (p=i, 2... R-f: n=l, 2...S-1) (3.3) 

where p, n are the number of the fundamental modes. 
Substituting (3.2) into (3.1) and taking account of (3.1), we obtain the natural fre- 

quencies of a model of R X S elements with a distributed mass 

[@xS)]z = $43 a-2 sin’& a (3 - 2 sin” p) + b’z’sin2 p (3 - 2 sin2 a) 
P, n (3 - 2 sin” a) (3 - 2 sin2 p) 

If rectangular elements for which the mass is concentrated at the nodes are used, then 
(3.1) simplifies somewhat and the frequencies of the model become 

[,(RxS)]z = $ $[a-~ sin” a (3 
p, n - 2 sin2 b) + be2 sin2 p (3 - 2 sin2 a)] 

As the number of elements of the partition increases, the frequencies of both models 
tend monotonely to the corresponding frequencies a$‘!% of a continuous system 

Fig. 2. 

limo(RXS)= a(O) =a 
P, n P. n 

(A = aR, B = bS are the sides of the mem- 

brane). 
The relative error of the method of finite 

elements in computing the natural vibrations 

of a membrane is defined by the formula 

Presented in Fig. 2 are values of F at the 
first six frequencies of a square membrane. 
The errors have been calculated for models 
with different partitions under the condition 
H=S.The number of elements RX S and the 
relative error E are plotted to a logarithmic 
scale. For a model with distributed mass E 
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is noted by dark circles, and for a model with point masses by open circles. For clarifi- 
cation, the values of E referring to a single tone of the model are connected by segm- 
ents near which the numbers of the modes are indicated. 

From a comparison of the graphs it follows that the model with point masses has con- 

siderably greater error. Its frequencies tend to the exact values from below. while for 
the model with distributed mass from above. Tine relative error for all modes of the 

models considered decreases as (R X S)-l as the number of elements increases. The 
exception is just the higher modes for a small number of elements. 

Mode 
2x2 3x3 4X4 

- 

I - 6X6 

1.61 
1.07* 

- 
- 

1.53 
1.27* 

2.60 
1.68* 

- 2.72 
- 1.83* 

1.50 1.48 
i.35* 1.41* 

2.44 2.33 
1.89* 2.06* 

2.59 2.50 
2.00* 2.21* 

2.20 2.04 1.99 1.94 
1.56* 1.67* 1.7w 1.84* 

- 
- 

- 
- 

3.38 3.09 2.87 
2.10* 2.36* 2.40* 

3.99 3.67 3.50 
2.55* 2.ai* 2.90* 

Partition 
-7 

Table 1. 

after [9] 

1.45 

2.21 

2.38 

1.88 

2.59 

3.20 

4, The natural frequencies of membranes of arbitrary shape were calculated directly 
by solving the system (2.2) by using an electronic computer. The frequencies of a cir- 
cular membrane comprised of finite triangular elements were determined by such a me- 
thod in [S]. 

As an illustration here, a membrane in the form of a rhombus for which the solution 
has been obtained in [9] by the Rayleigh-Ritz method, is examined. In the computation 

the membrane was divided into rhombic elements of similar shape. The calculations 
were carried out by a program; the time to determine ten natural modes on a model 
with 25 degrees of freedom on the M-20 electronic computer did not exceed ten minutes. 
The first three frequencies of the models are presented in Table 1 for ‘p = 75” and cp = 

45’. The values obtained in [9] are indicated here. The frequencies of the model with 

point masses (marked with an asterisk in Table 1) lie below the real values, and of the 
model with concentrated mass, above. 

Similar results have also been obtained for membranes of other shapes. 
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A circular rigid stamp is in contact with the surface of a viscoelastic half-space. 

The stamp performs forced harmonic oscillations around the axis of symmetry. 
The surface is stress- free everywhere outside the domain of contact. 

Approximate expressions are found for the displacement, the stress under the 
stamp, the moment of the reactive forces acting on the stamp under the assum- 
ption of stationarity of the oscillations and their disappearance at infinity. 

Sagoci [1] obtained the solution of an analogous problem for an elastic half- 
space. 

1. Let us introduce a cylindrical r , cp , z coordinate system with origin at the 
center of the contact domain. By analogy with the elastic problem, only the following 
quantities are not trivial: Us, zlWp’ zrrq the angular displacement and the tangential str - 
esses. The motion of the medium is described by the equation for the elastic displace- 
ment with two boundary conditions 


